BAG-1, a negative regulator of Hsp70 chaperone activity, uncouples nucleotide hydrolysis from substrate release.
نویسندگان
چکیده
Molecular chaperones influence the process of protein folding and, under conditions of stress, recognize non-native proteins to ensure that misfolded proteins neither appear nor accumulate. BAG-1, identified as an Hsp70 associated protein, was shown to have the unique properties of a negative regulator of Hsp70. Here, we demonstrate that BAG-1 inhibits the in vitro protein refolding activity of Hsp70 by forming stable ternary complexes with non-native substrates that do not release even in the presence of nucleotide and the co-chaperone, Hdj-1. However, the substrate in the BAG-1-containing ternary complex does not aggregate and remains in a soluble intermediate folded state, indistinguishable from the refolding-competent substrate-Hsp70 complex. BAG-1 neither inhibits the Hsp70 ATPase, nor has the properties of a nucleotide exchange factor; instead, it stimulates ATPase activity, similar to that observed for Hdj-1, but with opposite consequences. In the presence of BAG-1, the conformation of Hsp70 is altered such that the substrate binding domain becomes less accessible to protease digestion, even in the presence of nucleotide and Hdj-1. These results suggest a mechanistic basis for BAG-1 as a negative regulator of the Hsp70-Hdj-1 chaperone cycle.
منابع مشابه
GrpE-like regulation of the hsc70 chaperone by the anti-apoptotic protein BAG-1.
The BAG-1 protein appears to inhibit cell death by binding to Bcl-2, the Raf-1 protein kinase, and certain growth factor receptors, but the mechanism of inhibition remains enigmatic. BAG-1 also interacts with several steroid hormone receptors which require the molecular chaperones Hsc70 and Hsp90 for activation. Here we show that BAG-1 is a regulator of the Hsc70 chaperone. BAG-1 binds to the A...
متن کاملPathways of allosteric regulation in Hsp70 chaperones
Central to the protein folding activity of Hsp70 chaperones is their ability to interact with protein substrates in an ATP-controlled manner, which relies on allosteric regulation between their nucleotide-binding (NBD) and substrate-binding domains (SBD). Here we dissect this mechanism by analysing mutant variants of the Escherichia coli Hsp70 DnaK blocked at distinct steps of allosteric commun...
متن کاملModulation of in vivo HSP70 chaperone activity by Hip and Bag-1.
The chaperone activity of Hsp70 is influenced by the activities of both positive and negative regulatory proteins. In this study, we provide first time evidence for the stimulating effect of the Hsp70-interacting protein Hip on the chaperone activity in the mammalian cytosol. Overexpressing Hip enhances the refolding of the heat-inactivated reporter enzyme luciferase expressed in hamster lung f...
متن کاملBAG-1 modulates the chaperone activity of Hsp70/Hsc70.
The 70 kDa heat shock family of molecular chaperones is essential to a variety of cellular processes, yet it is unclear how these proteins are regulated in vivo. We present evidence that the protein BAG-1 is a potential modulator of the molecular chaperones, Hsp70 and Hsc70. BAG-1 binds to the ATPase domain of Hsp70 and Hsc70, without requirement for their carboxy-terminal peptide-binding domai...
متن کاملCharacterization of interactions between the anti-apoptotic protein BAG-1 and Hsc70 molecular chaperones.
The anti-cell death protein BAG-1 binds to 70-kDa heat shock proteins (Hsp70/Hsc70) and modulates their chaperone activity. Among other facilitory roles, BAG-1 may serve as a nucleotide exchange factor for Hsp70/Hsc70 family proteins and thus represents the first example of a eukaryotic homologue of the bacterial co-chaperone GrpE. In this study, the interactions between BAG-1 and Hsc70 are cha...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- The EMBO journal
دوره 17 23 شماره
صفحات -
تاریخ انتشار 1998